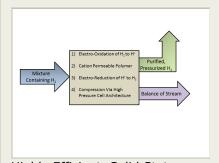
Highly Efficient, Solid State Hydrogen Purification for Resource Recovery, Phase I


Completed Technology Project (2014 - 2014)

Project Introduction

Sustainable Innovations' signature electrochemical cell architecture provides a solution to NASA's search for regenerative separation technology enabling maximum hydrogen recovery from a stream containing water vapor (saturated), carbon monoxide (CO), and hydrocarbons including methane, acetylene, ethane, and ethylene, among others. Separation of hydrogen from mixed gaseous streams presents a significant technical challenge for various NASA applications. In addition, the ability to efficiently perform hydrogen purification presents an attractive economic opportunity. Sustainable Innovations is developing a technology that extracts hydrogen from a mixed stream by electro-oxidization of the hydrogen and subsequent electroreduction of the resultant protons in a separate chamber. The process, when combined with an electrochemical cell architecture that is engineered to tolerate high differential pressure, can be used to separate and compress hydrogen in a single step. The process is proven to be efficient, quiet, and highly reliable. It requires no reciprocating compressor, so it is largely maintenance free.

Primary U.S. Work Locations and Key Partners

Highly Efficient, Solid State Hydrogen Purification for Resource Recovery Project Image

Table of Contents

Project Introduction	1
Primary U.S. Work Locations	
and Key Partners	1
Project Transitions	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	2
Images	3
Technology Areas	3
Target Destinations	3

Small Business Innovation Research/Small Business Tech Transfer

Highly Efficient, Solid State Hydrogen Purification for Resource Recovery, Phase I

Completed Technology Project (2014 - 2014)

Organizations Performing Work	Role	Туре	Location
Sustainable Innovations, LLC	Lead Organization	Industry	East Hartford, Connecticut
Marshall SpaceFlightCenter(MSFC)	Supporting Organization	NASA Center	Huntsville, Alabama
Skyre Inc	Supporting Organization	Industry Small Disadvantaged Business (SDB)	

Primary U.S. Work Locations			
Alabama	Connecticut		

Project Transitions

June 2014: Project Start

December 2014: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/140541)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Sustainable Innovations, LLC

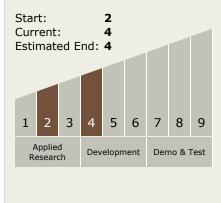
Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler

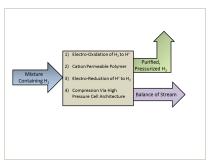

Program Manager:

Carlos Torrez

Principal Investigator:

Joshua Preston

Technology Maturity (TRL)


Small Business Innovation Research/Small Business Tech Transfer

Highly Efficient, Solid State Hydrogen Purification for Resource Recovery, Phase I

Completed Technology Project (2014 - 2014)

Images

Project Image

Highly Efficient, Solid State Hydrogen Purification for Resource Recovery Project Image (https://techport.nasa.gov/imag e/126501)

Technology Areas

Primary:

- TX06 Human Health, Life Support, and Habitation Systems
 - TX06.1 Environmental
 Control & Life Support
 Systems (ECLSS) and
 Habitation Systems
 - ☐ TX06.1.1 Atmosphere Revitalization

Target Destinations

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

